On the Characterization of Expansion Maps for Self-Affine Tilings
نویسندگان
چکیده
We consider self-affine tilings in R with expansion matrix φ and address the question which matrices φ can arise this way. In one dimension, λ is an expansion factor of a self-affine tiling if and only if |λ| is a Perron number, by a result of Lind. In two dimensions, when φ is a similarity, we can speak of a complex expansion factor, and there is an analogous necessary condition, due to Thurston: if a complex λ is an expansion factor of a self-similar tiling, then it is a complex Perron number. We establish a necessary condition for φ to be an expansion matrix for any n, assuming only that φ is diagonalizable over C. We conjecture that this condition on φ is also sufficient for the existence of a self-affine tiling.
منابع مشابه
On Analytical Study of Self-Affine Maps
Self-affine maps were successfully used for edge detection, image segmentation, and contour extraction. They belong to the general category of patch-based methods. Particularly, each self-affine map is defined by one pair of patches in the image domain. By minimizing the difference between these patches, the optimal translation vector of the self-affine map is obtained. Almost all image process...
متن کاملSelf-Affine Tiles in Rn
A self-affine tile in R is a set T of positive measure with A(T) = d ∈ $ < (T + d), where A is an expanding n × n real matrix with det (A) = m on integer, and $ = {d 1 ,d 2 , . . . , d m } ⊆ R is a set of m digits. It is known that self-affine tiles always give tilings of R by translation. This paper extends the known characterization of digit sets $ yielding self-affine tiles. It proves seve...
متن کاملPSEUDO-SELF-AFFINE TILINGS IN Rd
It is proved that every pseudo-self-affine tiling in R is mutually locally derivable with a self-affine tiling. A characterization of pseudo-self-similar tilings in terms of derived Voronöı tessellations is a corollary. Previously, these results were obtained in the planar case, jointly with Priebe Frank. The new approach is based on the theory of graph-directed iterated function systems and su...
متن کاملC*-Extreme Points and C*-Faces oF the Epigraph iF C*-Affine Maps in *-Rings
Abstract. In this paper, we define the notion of C*-affine maps in the unital *-rings and we investigate the C*-extreme points of the graph and epigraph of such maps. We show that for a C*-convex map f on a unital *-ring R satisfying the positive square root axiom with an additional condition, the graph of f is a C*-face of the epigraph of f. Moreover, we prove som...
متن کاملRemarks on Self-Affine Tilings
We study self-affine tilings of R n with special emphasis on the two-digit case. We prove that in this case the tile is connected and, if n 3, is a lattice-tile.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete & Computational Geometry
دوره 43 شماره
صفحات -
تاریخ انتشار 2010